Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
INTRODUCTION: The morphological and molecular changes associated with the degeneration of arterioles in cerebral amyloid angiopathy (CAA) are incompletely understood. METHODS: Post mortem brains from 26 patients with CAA or neurological controls were analyzed using light-sheet microscopy, and morphological features of microvascular degeneration were quantified using surface volume rendering. Vascular stiffness was analyzed using atomic force microscopy. RESULT: Vascular smooth muscle cells (VSMCs) volume was reduced by ≈ 55% inCAA. This loss of VSMC volume correlated with increased arteriolar diameter, variability in diameter, and the volume of amyloid beta (Aβ) deposition in the vessel. Vessels with CAA were > 300% stiffer than controls. The volume of extracellular matrix cross-linking enzyme lysyl oxidase (LOX) correlated closely with vascular degenerative features. DISCUSSION: Our findings provide valuable insights into the connections among LOX, Aβ deposition, and vascular stiffness in CAA. Restoration of physiologic extracellular matrix properties in penetrating arteries may yield a novel therapeutic strategy for CAA.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Three-dimensional mitochondria reconstructions of murine cardiac muscle changes in size across agingThis article shows how mitochondria in murine cardiac changes, importantly elucidating age-related changes. It also is the first to show that the MICOS complex may play a role in outer membrane mitochondrial structure.more » « less
-
Abstract During aging, muscle gradually undergoes sarcopenia, the loss of function associated with loss of mass, strength, endurance, and oxidative capacity. However, the 3D structural alterations of mitochondria associated with aging in skeletal muscle and cardiac tissues are not well described. Although mitochondrial aging is associated with decreased mitochondrial capacity, the genes responsible for the morphological changes in mitochondria during aging are poorly characterized. We measured changes in mitochondrial morphology in aged murine gastrocnemius, soleus, and cardiac tissues using serial block‐face scanning electron microscopy and 3D reconstructions. We also used reverse transcriptase‐quantitative PCR, transmission electron microscopy quantification, Seahorse analysis, and metabolomics and lipidomics to measure changes in mitochondrial morphology and function after loss of mitochondria contact site and cristae organizing system (MICOS) complex genes,Chchd3,Chchd6, andMitofilin. We identified significant changes in mitochondrial size in aged murine gastrocnemius, soleus, and cardiac tissues. We found that both age‐related loss of the MICOS complex and knockouts of MICOS genes in mice altered mitochondrial morphology. Given the critical role of mitochondria in maintaining cellular metabolism, we characterized the metabolomes and lipidomes of young and aged mouse tissues, which showed profound alterations consistent with changes in membrane integrity, supporting our observations of age‐related changes in muscle tissues. We found a relationship between changes in the MICOS complex and aging. Thus, it is important to understand the mechanisms that underlie the tissue‐dependent 3D mitochondrial phenotypic changes that occur in aging and the evolutionary conservation of these mechanisms betweenDrosophilaand mammals.more » « less
An official website of the United States government
